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Problems:
 Decentralized multi-robot path planning
 Effective communication

Constraints:
 Only local communication and local observations
 Constrained grid world

Methods:
 Convolutional Neural Network (CNN): Extracts features from local observations
 Graph Neural Network (GNN): Communicates features among robots locally
 The dataset is generated by an centralized expert algorithm

Results:
 Metrics: Success rates and Flowtime Increase
 A performance close to expert algorithm
 Generalization: larger environments and larger robot teams

Abstract
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 Multi-Robot Path Planning (MRPP)

Introduction

- Collision-free
- Effective

 Coupled (Centralized) or decoupled (Decentralized) method

- Ensure the optimality 
and completeness

- Too much calculation 
for large number of 
robots

- Sub-optimal and 
incomplete solutions

- Reduce the 
computational 
complexity
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Introduction

Learning-based method

Upenn: Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, and Vijay Kumar. 2020.
Graph policy gradients for large scale robot control. 

The rise of artificial intelligence：

• 计算资源的快速发展（如GPU）

• 大量训练数据的可用性

• 深度学习从欧氏空间数据中提取潜在特征的有效性

Computer Vision, Natural Language Processing

Euclidean Structure Non-Euclidean Structure

GNN
图神经网络

Multi-agent problem
(decentralized method)

Cambridge: Li Q, Gama F, Ribeiro A, et al. Graph neural networks for decentralized 
multi-robot path planning[J]. arXiv preprint arXiv:1912.06095, 2019.
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Introduction

Problem1：It is far from obvious what information is crucial to the task at hand, 
and how and when it must be shared among robots.

User-defined information

Disadvantages：(1) 传递信息有限 (2) 无法描述不规则的障碍信息
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Introduction

Problem2：Reinforcement learning process is very blind and inefficient in the 
process of exploration.

Disadvantages：(1) 物理世界随机探索的效率太低。(2) 无法解释最终结果是
不是比成熟算法更好。

Formation TrajectoriesTotal Reward in Training Process
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Introduction

The Proposed Architecture

Problem1: A CNN that extracts adequate features Problem2: Supervised learning

Sufficient Communication
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Problem Formulation:

Let 𝑉𝑉 = {𝑣𝑣1, . . . , 𝑣𝑣𝑁𝑁 } be the set of N robots.

Observation
At time t, each robot perceives its surroundings within a given field of vision.
This map perceived by robot i is denoted by 𝑍𝑍𝑡𝑡𝑖𝑖 ∈ 𝑅𝑅𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹×𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹

Each robot has access 128 observations �𝑥𝑥𝑡𝑡𝑖𝑖 ∈ 𝑅𝑅128.

Communication network：𝐺𝐺𝑡𝑡 = (𝑉𝑉, 𝜀𝜀𝑡𝑡 ,𝑊𝑊𝑡𝑡)
𝑉𝑉: the set of robots
𝜀𝜀𝑡𝑡 ⊆ 𝑉𝑉 × 𝑉𝑉:the set of edges
Communication radius: 𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.   If 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗 ≤ 𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, robots can communicate.

An adjacency matrix 𝑆𝑆𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁, where 𝑆𝑆𝑡𝑡 𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑡𝑡
𝑖𝑖𝑖𝑖 = 1 only if (𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖) ∈ 𝜀𝜀𝑡𝑡.

Problem Statement

CNN
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Problem Formulation:

Objective: 
To learn a mapping ℱ,  𝑢𝑢𝑡𝑡 = ℱ 𝑍𝑍𝑡𝑡𝑖𝑖 ,𝐺𝐺𝑡𝑡 . 

For each robot:
Input: observations 𝑍𝑍𝑡𝑡𝑖𝑖 , and communication graph 𝐺𝐺𝑡𝑡
Output: an action 𝑢𝑢𝑡𝑡

(1) Shortest possible time, avoiding collisions with other robots and 
obstacles. 

(2) To perform as well as a coupled centralized expert.

Problem Statement
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Introduction

The Proposed Architecture

Problem1: A CNN that extracts adequate features Problem2: Supervised learning

Sufficient Communication
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CNN

What is the CNN (Convolutional neural network)? 

And what does the CNN do?
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Convolutional neural network
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Convolutional neural network
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矩阵𝑾𝑾𝟏𝟏 矩阵𝑾𝑾𝒌𝒌

偏置b1 偏置b2
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权重W
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Graph Neural Network

What is the GNN (Graph Neural Network)? 
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Objective: 
To learn a mapping ℱ,  𝑢𝑢𝑡𝑡 = ℱ 𝑍𝑍𝑡𝑡𝑖𝑖 ,𝐺𝐺𝑡𝑡 . 

Graph Convolutions (类比于𝑤𝑤𝑤𝑤 + 𝑏𝑏)

𝐹𝐹(128) observations for robot 𝑖𝑖 in time 𝑡𝑡: �𝑥𝑥𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁

Graph Neural Network

𝑍𝑍𝑡𝑡𝑖𝑖
𝐶𝐶𝑁𝑁𝑁𝑁

�𝑥𝑥𝑡𝑡𝑖𝑖

𝐺𝐺𝑡𝑡

GNN 𝑢𝑢𝑡𝑡

𝐗𝐗𝑡𝑡 =
�𝐱𝐱𝑡𝑡1 ⊤

⋮
�𝐱𝐱𝑡𝑡𝑁𝑁 ⊤

= 𝐱𝐱𝑡𝑡1 ⋯ 𝐱𝐱𝑡𝑡𝐹𝐹 …
𝐱𝐱𝑡𝑡1

To formally describe the communication between neighboring agents, we
need adjacency matrix in time 𝑡𝑡: 𝑆𝑆𝑡𝑡, and the operation 𝑆𝑆𝑡𝑡𝑋𝑋𝑡𝑡.
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Graph Convolutions

where 𝑁𝑁𝑖𝑖 = {𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 ∶ (𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖 ) ∈ ℰ𝑡𝑡 } is the set of nodes 𝑣𝑣𝑗𝑗 that are neighbors
of 𝑣𝑣𝑖𝑖. The linear operation 𝑆𝑆𝑡𝑡𝑋𝑋𝑡𝑡 is essentially shifting the values of 𝑋𝑋𝑡𝑡 through
the nodes.
Then we can define a graph convolution as linear combination of shifted
versions of the signal:

Graph Neural Network

S𝑡𝑡X𝑡𝑡 𝑖𝑖𝑖𝑖 = �
𝑗𝑗=1

𝑁𝑁

S𝑡𝑡 𝑖𝑖𝑖𝑖 X𝑡𝑡 𝑗𝑗𝑗𝑗 = �
𝑗𝑗:𝑣𝑣𝑗𝑗∈𝑁𝑁𝑖𝑖

𝑠𝑠𝑡𝑡
𝑖𝑖𝑖𝑖 𝑥𝑥𝑡𝑡

𝑗𝑗𝑗𝑗

𝒜𝒜 X𝑡𝑡; S𝑡𝑡 = �
𝑘𝑘=0

𝐾𝐾−1

S𝑡𝑡𝑘𝑘 X𝑡𝑡A𝑘𝑘

A𝑘𝑘 : is similar to the weight matrix in DNN.
𝐾𝐾: k-hop nodes
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Graph Convolutions

1.     左乘 S𝑡𝑡𝑘𝑘𝑋𝑋𝑡𝑡：与graph中的拓扑关系一致，表明不同节点之间的联系
右乘 𝑋𝑋𝑡𝑡𝐴𝐴𝑘𝑘 ：值是任意的，表示同一个节点特征的线性组合，在不同

节点之间构建了权值共享机制(weight sharing scheme)。

2.      如何针对K-hop计算S𝑡𝑡𝑘𝑘𝑋𝑋𝑡𝑡：

Graph Neural Network

𝒜𝒜 X𝑡𝑡; S𝑡𝑡 = �
𝑘𝑘=0

𝐾𝐾−1

S𝑡𝑡𝑘𝑘 X𝑡𝑡A𝑘𝑘

S𝑡𝑡𝑘𝑘X𝑡𝑡 = S𝑡𝑡 S𝑡𝑡𝑘𝑘−1X𝑡𝑡

看似计算了𝑘𝑘次周围邻1节点的结果，实际计算的是k-hop节点的结果。

三点解释
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Graph Convolutions

3. 分布式计算 For each robot:

(1) S𝑡𝑡X𝑡𝑡 𝑖𝑖𝑖𝑖 = �
𝑗𝑗=1

𝑁𝑁
S𝑡𝑡 𝑖𝑖𝑖𝑖 X𝑡𝑡 𝑗𝑗𝑗𝑗 = �

𝑗𝑗:𝑣𝑣𝑗𝑗∈𝑁𝑁𝑖𝑖
𝑠𝑠𝑡𝑡
𝑖𝑖𝑖𝑖 𝑥𝑥𝑡𝑡

𝑗𝑗𝑗𝑗

(2) 𝒜𝒜 X𝑡𝑡; S𝑡𝑡 𝑖𝑖 = �
𝑘𝑘=0

𝐾𝐾−1
S𝑡𝑡𝑘𝑘X𝑡𝑡 𝑖𝑖𝑖𝑖A𝑘𝑘

Graph Neural Network

𝒜𝒜 X𝑡𝑡; S𝑡𝑡 = �
𝑘𝑘=0

𝐾𝐾−1

S𝑡𝑡𝑘𝑘 X𝑡𝑡A𝑘𝑘

Graph Neural Network

𝜎𝜎：activation function. σ is applied to each element of the matrix 𝐴𝐴ℓ(𝑋𝑋ℓ−1; 𝑆𝑆)
The final learning target：

The backward process is similar to CNN.

Xℓ = 𝜎𝜎 𝒜𝒜ℓ Xℓ−1; S for ℓ = 1, … , 𝐿𝐿

Aℓ𝑘𝑘 𝑘𝑘=0
𝐾𝐾−1
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Architecture

The Proposed Architecture

CNN:
Conv2d-BatchNorm2d-ReLU-MaxPool2d and 
Conv2d-BatchNorm2d-ReLU blocks 3times

Cross-entropy
Loss

GNN: 1 layer  F=128
MLP:
128 input, 5 output (actions)



Architecture

Training: Learning from Expert Data

Training set: 𝒯𝒯 = 𝐙𝐙𝑡𝑡𝑖𝑖 , 𝐔𝐔𝑡𝑡 𝐔𝐔𝑡𝑡 : an optimal trajectory of actions

Generate random obstacles, start positions and goal positions. The optimal paths 
in every map are generated by an expert algorithm: Conflict-Based Search (CBS).

Inference stage
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Performance Evaluation
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Performance Evaluation
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Discussion and Future Work

Discussion
1. 与专家算法相比，时间上有优势。

2. 较好的泛化性。

3. 在更多数量的机器人群中训练的算法更好。

Future Work
1. Time-delayed aggregation GNNs, inter-robot live-locks and position swaps

2. 实物应用：空地协同，无人机提供视野，小车作为节点进行动作。
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Discussion and Future Work

Future Work
实物应用：空地协同，无人机提供视野，小车作为节点进行计算与动作。

UAV1

UAV2

1-hop

2-hop
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Code：https://github.com/proroklab/gnn_pathplanning
 Simulation demo: 

https://www.youtube.com/watch?v=AGDk2RozpMQ&featu
re=youtu.be

A website about Multi-Agent Path Finding (MAPF) 
problem: http://mapf.info/

Other Resources
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Thanks for your attention!
Q&A


