

LITERATURE READING

Graph Neural Networks for Decentralized Multi-Robot Path Planning

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.

Jinjie LI

School of Automation Science and Electrical Engineering Beihang University

Oct. 24, 2020

Outline

□ Abstract

- □ Introduction
- Problem Statement
- □ Architecture
- □ Performance Evaluation
- Discussion and Future Work

Outline

□ Abstract

- □ Introduction
- Problem Statement
- □ Architecture
- □ Performance Evaluation
- Discussion and Future Work

Abstract

Problems:

- Decentralized multi-robot path planning
- Effective communication

Constraints:

- Only local communication and local observations
- Constrained grid world

Methods:

- Convolutional Neural Network (CNN): **Extracts** features from local observations
- Graph Neural Network (GNN): **Communicates** features among robots locally
- The dataset is generated by an centralized expert algorithm

Results:

- Metrics: Success rates and Flowtime Increase
- A performance close to expert algorithm
- Generalization: larger environments and larger robot teams

Outline

□ Abstract

- □ Introduction
- Problem Statement
- □ Architecture
- □ Performance Evaluation
- Discussion and Future Work

□ Multi-Robot Path Planning (MRPP)

- Collision-free
- Effective

□ Coupled (Centralized) or decoupled (Decentralized) method

CENTRALIZED

- Ensure the optimality and completeness
- Too much calculation for large number of robots

DECENTRALIZED

- Sub-optimal and incomplete solutions
 - Reduce the computational complexity

Learning-based method

The rise of artificial intelligence:

- 计算资源的快速发展(如GPU)
- 大量训练数据的可用性
- 深度学习从欧氏空间数据中提取潜在特征的有效性

Computer Vision, Natural Language Processing

Upenn: Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, and Vijay Kumar. 2020. Graph policy gradients for large scale robot control.

Problem1: It is far from obvious **what** information is crucial to the task at hand, and **how** and **when** it must be shared among robots.

User-defined information

Disadvantages: (1) 传递信息有限 (2) 无法描述不规则的障碍信息

Problem2: Reinforcement learning process is very blind and inefficient in the process of exploration.

Total Reward in Training Process

Formation Trajectories

Disadvantages: (1) 物理世界随机探索的效率太低。(2) 无法解释最终结果是不是比成熟算法更好。

The Proposed Architecture

Outline

□ Abstract

- □ Introduction
- Problem Statement
- □ Architecture
- □ Performance Evaluation
- Discussion and Future Work

Problem Statement

Problem Formulation:

Let $V = \{v_1, \dots, v_N\}$ be the set of N robots.

Observation

At time t, each robot perceives its surroundings within a given field of vision.

This map perceived by robot i is denoted by $Z_t^i \in R^{W_{FOV} \times H_{FOV}}$ Each robot has access 128 observations $\tilde{x}_t^i \in R^{128}$. \leftarrow CNN \leftarrow \mathbb{F}_{QP}^{State}

Communication network: $G_t = (V, \varepsilon_t, W_t)$

V: the set of robots

 $\varepsilon_t \subseteq V \times V$:the set of edges

Communication radius: r_{COMM} . If $||p_i - p_j|| \le r_{COMM}$, robots can communicate. An adjacency matrix $S_t \in \mathbb{R}^{N \times N}$, where $[S_t]_{ij} = s_t^{ij} = 1$ only if $(v_j, v_i) \in \varepsilon_t$. Map

Robot B

Problem Statement

Problem Formulation:

Objective:

To learn a mapping \mathcal{F} , $u_t = \mathcal{F}(\{Z_t^i\}, G_t)$. For each robot: Input: observations $\{Z_t^i\}$, and communication graph G_t Output: an action u_t

- (1) Shortest possible time, avoiding collisions with other robots and obstacles.
- (2) To perform as well as a coupled centralized expert.

Outline

\Box Abstract

- □ Introduction
- Problem Statement
- □ Architecture
- □ Performance Evaluation
- Discussion and Future Work

The Proposed Architecture

What is the CNN (Convolutional neural network)?

And what does the CNN do?

单层感知机

包含两层神经元: (1) 输入层(信号传递) (2) 输出层(M-P神经元, threshold logic unit)

http://homepages.gold.ac.uk/nikolaev/311perc.htm

感知机如何学习?

- 对于给定的训练数据集 (x, y)
- 若当前感知机的输出为 $\hat{y} \rightarrow y = f\left(\sum_{i} w_{i} x_{i} \theta\right)$
- 则感知机将根据误差对权重做如下调整:

$$w_i \leftarrow w_i + \Delta w_i$$
$$\Delta w_i = \eta \left(y - \hat{y} \right) x_i$$

其中 $\eta \in (0,1)$ 称为学习率(learning rate)

思考:如何保证学习过程的收敛与效率?

https://www.mathworks.com/help/nnet/ug/perceptron-neural-networks.html

如何训练多层感知机

《神经网络与机器学习》第78页, Simon Haykin

卷积神经网络 Convolutional Neural Network

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

全连接层(FC)

What is the GNN (Graph Neural Network)?

Objective:

To learn a mapping
$$\mathcal{F}$$
, $u_t = \mathcal{F}(\{Z_t^i\}, G_t)$.

$$\begin{cases} Z_t^i \} \xrightarrow{CNN} \tilde{x}_t^i \\ G_t \end{cases} \xrightarrow{GNN} u_t \\ G_t \xrightarrow{G_t} y = f\left(\sum_i w_i x_i - \theta\right) \end{cases}$$

F(128) observations for robot *i* in time $t: \tilde{x}_t^i, i = 1, ..., N$

To formally describe the communication between neighboring agents, we need adjacency matrix in time $t: S_t$, and the operation $S_t X_t$.

Graph Convolutions

where $N_i = \{v_j \in V : (v_j, v_i) \in \mathcal{E}_t\}$ is the set of nodes v_j that are neighbors of v_i . The linear operation $S_t X_t$ is essentially shifting the values of X_t through the nodes.

Then we can define a **graph convolution** as linear combination of shifted versions of the signal:

$$\mathcal{A}(X_t; S_t) = \sum_{k=0}^{K-1} S_t^k X_t A_k$$

 $\{A_k\}$: is similar to the weight matrix in DNN. *K*: k-hop nodes

Graph Convolutions

三点解释

$$\mathcal{A}(X_t; S_t) = \sum_{k=0}^{K-1} S_t^k X_t A_k$$

- 1. 左乘 $S_t^k X_t$: 与graph中的拓扑关系一致,表明不同节点之间的联系 右乘 $X_t A_k$: 值是任意的,表示同一个节点特征的线性组合,在不同 节点之间构建了权值共享机制(weight sharing scheme)。
- 2. 如何针对K-hop计算 $S_t^k X_t$:

$$S_t^k X_t = S_t \left(S_t^{k-1} X_t \right)$$

看似计算了k次周围邻1节点的结果,实际计算的是k-hop节点的结果。

Graph Convolutions

$$\mathcal{A}(X_t; S_t) = \sum_{k=0}^{K-1} S_t^k X_t A_k$$

3. 分布式计算 For each robot:

(1)
$$[S_t X_t]_{if} = \sum_{j=1}^{N} [S_t]_{ij} [X_t]_{jf} = \sum_{j:v_j \in N_i} s_t^{ij} x_t^{jf}$$

(2) $\mathcal{A}(X_t; S_t)_i = \sum_{k=0}^{K-1} [S_t^k X_t]_{if} A_k$

Graph Neural Network

$$X_{\ell} = \sigma[\mathcal{A}_{\ell}(X_{\ell-1}; S)] \quad for \quad \ell = 1, \dots, L$$

σ: activation function. σ is applied to each element of the matrix $A_{\ell}(X_{\ell-1}; S)$ The final learning target: $\{A_{\ell k}\}_{k=0}^{K-1}$

The backward process is similar to CNN.

Architecture

The Proposed Architecture

Training: Learning from Expert Data

Training set: $\mathcal{T} = \{(\{\mathbf{Z}_t^i\}, \{\mathbf{U}_t\})\}$ { $\mathbf{U}_t\}$: an optimal trajectory of actions

Generate random obstacles, start positions and goal positions. The optimal paths in every map are generated by an expert algorithm: Conflict-Based Search (CBS).

Inference stage

Update Z_t^i by action u_t until all robots reach goals or the loop exceeds maximum step

Outline

\Box Abstract

- □ Introduction
- Problem Statement
- □ Architecture
- Performance Evaluation
- Discussion and Future Work

Graph Neural Networks for Decentralized Multi-Robot Path Planning

Qingbiao Li¹, Fernando Gama², Alejandro Ribeiro², Amanda Prorok¹

¹Prorok Lab, Deparment of Computer Science and Technology, University of Cambridge ²Alelab, Department of Electrical and Systems Engineering, University of Pennsylvania

Performance Evaluation

Outline

\Box Abstract

- □ Introduction
- Problem Statement
- □ Architecture
- □ Performance Evaluation
- Discussion and Future Work

Discussion and Future Work

Discussion

- 1. 与专家算法相比,时间上有优势。
- 2. 较好的泛化性。
- 3. 在更多数量的机器人群中训练的算法更好。

Future Work

- 1. Time-delayed aggregation GNNs, inter-robot live-locks and position swaps
- 2. 实物应用: 空地协同, 无人机提供视野, 小车作为节点进行动作。

Discussion and Future Work

Future Work

实物应用: 空地协同, 无人机提供视野, 小车作为节点进行计算与动作。

- Code: https://github.com/proroklab/gnn_pathplanning
 Simulation demo: https://www.youtube.com/watch?v=AGDk2RozpMQ&featu re=youtu.be
- A website about Multi-Agent Path Finding (MAPF) problem: http://mapf.info/

Thanks for your attention! Q&A