

LITERATURE SHARING

Accommodating unobservability to control flight attitude with optic flow

Guido C. H. E. de Croon, Julien J. G. Dupeyroux, Christophe De Wagter, Abhishek Chatterjee, Diana A. Olejnik & Franck Ruffier

Nature 610.7932 (2022)

Jinjie Ll

Master Student School of Automation Science and Electrical Engineering Beihang University

December, 3, 2022

Problem

OBSERVABILITY & SIMULATION

STABILITY & SIMULATION

QUAD ROTOR EXPERIMENT

FLAPPING-WING ROBOT EXPERIMENT

CONCLUSION & INSPIRATION

Attitude Control

- Accelerator -> gravity direction
- Gyro -> body rate

- Accelerator -> gravity direction
- Gyro -> body rate
- Optic flow

What is optic flow?

 the distribution of apparent velocities of movement of brightness pattern in an image ---- Wikipedia

Can we extract the attitude information from optic flow?

State
$$\vec{x} = [v_I, \varphi, Z_I]$$
 Control Input $u = p$

System model

$$f(\vec{\mathbf{x}}, u) = \begin{bmatrix} \dot{v}_I \\ \dot{\phi} \\ \dot{Z}_I \end{bmatrix} = \begin{bmatrix} g \tan(\varphi) \\ p \\ 0 \end{bmatrix}$$

Measurement model

$$\omega_{y} = -\frac{v_{B}}{Z_{B}} + p = -\frac{\cos^{2}(\varphi)v_{I}}{Z_{I}} + p$$
$$\Rightarrow \quad y = \omega_{y} = h(\vec{x})$$

Assumption

- Consider Y-Z plane only
- Altitude is constant

Observability analysis

"observability mapping"

21 >

$$\dot{y} = \frac{\partial y}{\partial t} = \mathcal{L}_{f}^{1}h = \frac{\partial y}{\partial \vec{x}}\frac{\partial \vec{x}}{\partial t} = \frac{(2pv_{I} - g)\sin(2\varphi)}{2Z_{I}}$$

$$H(\vec{x}) = \begin{bmatrix} h\\ \mathcal{L}_{f}^{1}h\\ \mathcal{L}_{f}^{2}h \end{bmatrix} = \begin{bmatrix} y\\ \dot{y}\\ \ddot{y} \end{bmatrix} = \begin{bmatrix} -\frac{\cos^{2}(\varphi)v_{I}}{Z_{I}} + p\\ \frac{(2pv_{I} - g)\sin(2\varphi)}{2Z_{I}}\\ \frac{(2pv_{I} - g)\sin(2\varphi)}{2Z_{I}}\\ p\frac{2(pv_{I} - g)\cos(2\varphi) + g}{Z_{I}} \end{bmatrix}$$

observability matrix

$$\mathcal{O} = \frac{\partial H(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial y}{\partial \vec{x}} & \frac{\partial \dot{y}}{\partial \vec{x}} & \frac{\partial \ddot{y}}{\partial \vec{x}} \end{bmatrix} = \begin{bmatrix} -\frac{\cos^2(\varphi)}{Z_I} & \frac{p \sin(2\varphi)}{Z_I} & \frac{2 p^2 \cos(2\varphi)}{Z_I} \\ \frac{\sin(2\varphi)v_I}{Z_I} & \frac{(2pv_I - g)\cos(2\varphi)}{Z_I} & 4p \frac{(g - pv_I)\sin(2\varphi)}{Z_I} \\ \frac{\cos^2(\varphi)v_I}{Z_I^2} & \frac{(g - 2pv_I)\sin(2\varphi)}{2Z_I^2} & -p \frac{2(pv_I - g)\cos(2\varphi) + g}{Z_I^2} \end{bmatrix} \\ \mathcal{O}^T d\vec{x} = \begin{bmatrix} dy \\ d\dot{y} \\ d\dot{y} \end{bmatrix} d\vec{x} = \mathcal{O}^{-T} \begin{bmatrix} dy \\ d\dot{y} \\ d\ddot{y} \end{bmatrix}$$

Kou, Shauying R., David L. Elliott, and Tzyh Jong Tarn. "Observability of nonlinear systems." *Information and Control* 22.1 (1973): 89-99.

- Any condition when $p=0 \rightarrow$ unobservable
- A perfect hover \rightarrow rate=0 \rightarrow unobservable

All conditions

MATLAB symbolic toolbox

$$|\mathcal{O}| = -\frac{g p \left(\frac{\cos(2\phi)}{2} + \frac{1}{2}\right) (g \cos(2\phi) - 2g + 2p v \cos(2\phi))}{Z_I^4} = 0$$
$$p = 0 \qquad \lim_{Z_I \to \infty} |\mathcal{O}| = 0 \qquad g = 0$$

$$p = \frac{2 g - g \cos(2 \phi)}{2 v \cos(2 \phi)} \qquad \varphi = \frac{1}{2} \pi \qquad \varphi = \frac{a \cos\left(\frac{2 g}{g + 2 p v}\right)}{2}$$
$$g^{2} \le 4 p^{2} v^{2} \wedge \frac{4 p^{2} v^{2}}{3} \le 3 \left(g + \frac{4 p v}{3}\right)^{2} \qquad \varphi = -\frac{a \cos\left(\frac{2 g}{g + 2 p v}\right)}{2} \qquad v_{I} = \frac{2 g - g \cos(2 \phi)}{2 p \cos(2 \phi)}$$

Quite unlikely to occur!

Numerical verification

e Degree of observability 5 p (degrees per s) $\kappa(\mathcal{O}) = \frac{s_{max}(\mathcal{O})}{s_{min}(\mathcal{O})}$ $S \rightarrow$ Singular value 0 $d(\mathcal{O}) = \frac{1}{\log(\kappa(\mathcal{O}))}$ **O: Lower observability** -20 1: Higher observability

Attitude is observable! However, not when hovering still.

Attitude is observable! However, not when hovering still.

What if you want to hover?

This leads to unobservability!

Is it possible to control the drones to hover?

$$\vec{\mathbf{x}} = [v_I, \varphi, Z_I]$$

$$f(\vec{\mathbf{x}}, u) = \begin{bmatrix} \dot{v}_I \\ \dot{\varphi} \\ \dot{Z}_I \end{bmatrix} = \begin{bmatrix} g \tan(\varphi) \\ p \\ 0 \end{bmatrix}$$

Part I: Stable control will lead the observable system to the desired attitude, with zero rate

Lyapunov function

$$V = (\varphi - \varphi^{*})^{2}$$

$$\dot{V} = \frac{\partial V}{\partial t} = \frac{\partial V}{\partial \vec{x}} \frac{\partial \vec{x}}{\partial t} = \begin{bmatrix} 0 & 2(\varphi - \varphi^{*}) & 0 \end{bmatrix} \begin{bmatrix} g \tan(\varphi) \\ p \\ 0 \end{bmatrix} = 2p(\varphi - \varphi^{*})$$

$$p = -K(\varphi - \varphi^{*}), K > 0, \qquad \Rightarrow \qquad \frac{\partial V}{\partial t} = -2K(\varphi - \varphi^{*})^{2} < 0$$

Part II: Unobservable conditions always lead to observable conditions

Measurement noise
 Actuation noise

Remark 1

Q: Asymptotic stability for a delay-less control system

A: Attitude control with basic PID is applied widely and successfully

$$p = 0$$
 or $\varphi = \varphi^*$

Remark 2

Q: The effect of outer loop controller is not considered.

A: **Part I** → nested Lyapunov analysis; **Part II** → more noise, more possibility to induce observability

• External disturbance

Please refer to Supplementary Materials.docx for more information

Constant height model

$$f(\vec{x}, u) = \begin{bmatrix} \dot{v}_I \\ \dot{\phi} \\ \dot{Z}_I \end{bmatrix} = \begin{bmatrix} g \tan(\phi) \\ p \\ 0 \end{bmatrix} \qquad \vec{x} = \begin{bmatrix} v_I, \phi, Z_I \end{bmatrix} \qquad u = p$$

Constant height model without rate measurements

$$\begin{bmatrix} \dot{v}_I \\ \dot{\phi} \\ \dot{p} \\ \dot{Z}_I \end{bmatrix} = \begin{bmatrix} g \tan(\varphi) \\ p \\ M/I \\ 0 \end{bmatrix} \qquad \vec{x} = [v_I, \varphi, p, Z_I] \qquad u = M$$

Varying height model with drag and wind

Varying height model with thrust bias and optic flow divergence

Surface with a slope

Optic-flow-based attitude estimation in generic environments

Model with independently moving head and body

Locally, weakly observable, except for the hover condition

Onboard the drone

Optic flow outer loop control

Supplementary video 1 Quadrotor flying with optic-flow-based attitude

16

Constant model

What can drones teach us about nature?

FLAPPING-WING ROBOT EXPERIMENT

What can drones teach us about nature?

Supplementary video 2 Flapper drone flying with optic-flow-based attitude

FLAPPING-WING ROBOT EXPERIMENT

The residual flapping motion improve attitude observability!

The results are close to those with honeybees

Can we extract the attitude information from optic flow?

- CONSTANT-HEIGHT MODEL & 6 OTHER MODELS
- **3** Observability & Simulation
- 4
- STABILITY & SIMULATION
- 5 QUAD ROTOR EXPERIMENT
- 6 FLAPPING-WING ROBOT EXPERIMENT

What can we learn from this article?

1. Standard process for control research

Observability, Stability, Symbolic calculation, Simulation with delay and noise, Hardware experiment

- 2. A perfect example on how to go **deeper**
 - \succ from a very simple model \rightarrow a much complicated one
 - \succ from special cases \rightarrow general conditions
 - \succ from simulation \rightarrow real-world flight
 - > from quadrotor \rightarrow flappy robot
- 3. Where do they find the problem

4. Based on many basic algorithms: ACT-corner, Lucas Kanade, INDI, EKF, CMA-ES

- Data available: <u>https://doi.org/10.4121/20183399</u>
- Code available: <u>https://github.com/tudelft/paparazzi/releases/tag/v5.17.5_attitude_flow</u>
- Talk by Prof. Guido: <u>https://collegerama.tudelft.nl/Mediasite/Play/12ead0e273964c1e9e63ca9d04bbb1a61d</u>

Thanks